

Soil Roughening

Exposed soils can be temporarily stabilized by driving a tractor over the surface

Description

Soil roughening is a temporary erosion control practice often used in conjunction with grading. Soil roughening involves increasing the relief of a bare soil surface with horizontal grooves by either stair-stepping (running parallel to the contour of the land) or using construction equipment to track the surface. Slopes that are not fine graded and left in a roughened condition can also reduce erosion. Soil roughening reduces runoff velocity, increases infiltration, reduces erosion, traps sediment, and prepares the soil for seeding and planting by giving seed an opportunity to take hold and grow.

Applicability

Soil roughening is appropriate for all slopes, but works especially well on slopes greater than 3:1, on piles of excavated soil, and in areas with highly erodible soils. This technique is especially appropriate for soils that are frequently disturbed, because roughening is relatively easy. To slow erosion, roughen the soil as soon as possible after the vegetation has been removed from the slope or immediately after grading activities have ceased (temporarily or permanently). Use this practice in conjunction with seeding, planting, and temporary mulching to stabilize an area. A combination of surface roughening and vegetation is appropriate for steeper slopes and slopes that will be left bare for longer periods of time.

Siting and Design Considerations

Roughened slope surfaces help establish vegetation, improve infiltration, and decrease runoff velocity. A rough soil surface allows surface ponding that protects lime, fertilizer, and seed and decreases erosion potential. Grooves in the soil are cooler and provide more favorable moisture conditions than hard, smooth surfaces. These conditions promote seed germination and vegetative growth:

- Avoid excessive soil compacting, because this inhibits vegetation growth and causes higher runoff velocity
- Limit roughening with tracked machinery to sandy soils that do not compact easily
- Avoid tracking on heavy clay soils, especially when wet.
- Seed roughened areas as quickly as possible, and follow proper [dust control](#) procedures.

Depending on the type of slope and the available equipment, use different methods for roughening soil on a slope. These include stair-step grading, grooving, and tracking. When choosing a method, consider factors such as slope steepness, mowing requirements, whether the slope is formed by cutting or filling, and available equipment.

Choose from the following methods for surface roughening:

Cut slope roughening for areas that will not be mowed. Use stair-step grades or groove-cut slopes for gradients steeper than 3:1. Use stair-step grading on any erodible material that is soft enough to be ripped with a bulldozer. Also, it is well suited for slopes consisting of soft rock with some subsoil. Make the vertical cut distance less than the horizontal distance, and slope the horizontal portion of the step slightly toward the vertical wall. Keep individual vertical cuts less than 2 feet deep in soft materials and less than 3 feet deep in rocky materials.

Grooving. This technique uses machinery to create a series of ridges and depressions that run across the slope along the contour. Make grooves using any appropriate implement that can be safely operated on the slope, such as disks, tillers, spring harrows, or the teeth on a front-end loader bucket. Make the grooves less than 3 inches deep and less than 15 inches apart.

Fill slope roughening for areas that will not be mowed. Fill slopes with a gradient steeper than 3:1 should be placed in lifts less than 9 inches, and properly compact each lift. The face of the slope should consist of loose, uncompacted fill 4 to 6 inches deep. If necessary, roughen the face of the slopes by grooving the surface as described above. Do not blade or scrape the final slope face.

Cuts, fills, and graded areas that will be mowed. Make mowed slopes no steeper than 3:1. Roughen these areas with shallow grooves less than 10 inches apart and deeper than 1 inch using normal tilling, disk, or harrowing equipment (a cultipacker-seeder can also be used). Excessive roughness is undesirable where mowing is planned.

Roughening with tracked machinery. To avoid undue compaction of the soil surface, limit roughening with tracked machinery only to sandy soils. Operate tracked machinery perpendicularly to the slope to leave horizontal depressions in the soil. Tracking is generally not as effective as other roughening methods.

Limitations

Soil roughening is not appropriate for rocky slopes. Tracked machinery can excessively compact the soil. Typically, soil roughening is effective only for gentle or shallow depth rains. If roughening is washed away in a heavy storm, re-roughen the surface and reseed.

Maintenance Considerations

Inspect roughened areas after storms to see if re-roughening is needed. Regular inspection should indicate where additional erosion and sediment control measures are needed. If rills (small watercourses that have steep sides and are usually only a few inches deep) appear, fill, regrade, and reseed them immediately. Use proper [dust control](#) methods.

Effectiveness

Soil roughening provides moderate erosion protection for bare soils while vegetative cover is being established. It is inexpensive and simple for short-term erosion control when used with other erosion and sediment controls.

Cost Considerations

Soil roughening requires minimal materials but requires using heavy equipment.

References

Smolen, M.D., D.W. Miller, L.C. Wyatt, J. Lichhardt, and A.L. Lanier. 1988. *Erosion and Sediment Control Planning and Design Manual*. North Carolina Sedimentation Control Commission; North Carolina Department of Environment, Health, and Natural Resources; and Division of Land Resources, Land Quality Section, Raleigh, NC.

USEPA (U.S. Environmental Protection Agency). 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA 840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA (U.S. Environmental Protection Agency). 1992. *Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices*. U.S. Environmental Protection Agency, Office of Water, Washington, DC.