

Geotextiles

Geotextile mats not only protect ground surfaces from wind and stormwater erosion but also allow vegetative growth (Source: Rolanka International, 2000)

Description

Geotextiles are porous fabrics also known as filter fabrics, road rugs, synthetic fabrics, construction fabrics, or simply fabrics. Geotextiles are manufactured by weaving or bonding fibers that are often made of synthetic materials such as polypropylene, polyester, polyethylene, nylon, polyvinyl chloride, glass, and various mixtures of these materials. As a synthetic construction material, geotextiles are used for a variety of purposes such as separators, reinforcement, filtration and drainage, and erosion control (USEPA, 1992). Some geotextiles are made of biodegradable materials such as mulch matting and netting. Mulch matting are jute or other wood fibers that have been formed into sheets and are more stable than normal mulch. Netting is typically made from jute, wood fiber, plastic, paper, or cotton and can be used to hold the mulching and matting to the ground. Netting can also be used alone to stabilize soils while the plants are growing; however, it does not retain moisture or temperature well. Mulch binders (either asphalt or synthetic) are sometimes used instead of netting to hold loose mulches together. Geotextiles can aid in plant growth by holding seeds, fertilizers, and topsoil in place. Fabrics come in a wide variety to match the specific needs of the site and are relatively inexpensive for certain applications.

Applicability

Geotextiles can be used in various ways for erosion control on construction sites. Use them as matting to stabilize the flow of channels or swales or to protect seedlings on recently planted slopes until they become established. Use matting on tidal or stream banks, where moving water is likely to wash out new plantings. Geotextiles can be used to protect exposed soils immediately and temporarily, such as when active piles of soil are left overnight. They can also be used as a separator between riprap and soil, which prevents the soil from being eroded from beneath the riprap and maintains the riprap's base.

Siting and Design Considerations

There are many types of geotextiles available; therefore, the selected fabric should match its purpose. To ensure the effective use of geotextiles, keep firm, continuous contact between the materials and the soil. If there is no contact, the material will not hold the soil, and erosion will occur underneath the material.

Limitations

Geotextiles (primarily synthetic types) have the potential disadvantage of disintegrating when exposed to light. Consider this before installing them. Some geotextiles might increase runoff or blow away if not firmly anchored. Depending on the type of material used, geotextiles might need to be disposed of in a landfill, making them less desirable than vegetative stabilization. If the geotextile fabric is not properly selected, designed, or installed, its effectiveness may be reduced drastically.

Maintenance Considerations

Inspect geotextiles regularly to determine if cracks, tears, or breaches have formed in the fabric; if so, repair or replace the fabric immediately. It is necessary to maintain contact between the ground and the geotextile at all times. Remove trapped sediment after each storm event.

Effectiveness

Geotextiles' effectiveness depends on the strength of the fabric and proper installation. For example, when protecting a cut slope with a geotextile, it is important to properly anchor the fabric. This will ensure that it will not be undermined by a storm event.

Cost Considerations

Costs for geotextiles range from \$0.50 to \$10.00 per square yard, depending on the type chosen (SWRPC, 1991).

References

Rolanka International. 2000. *Bio-D Mesh*. [<http://www.rolanka.com> EXIT Disclaimer]. Accessed November 10, 2005.

SWRPC (Southeast Wisconsin Regional Planning Commission). 1991. *Costs of Urban Nonpoint Source Water Pollution Control Measures*. Technical Report No. 31. Southeast Wisconsin Regional Planning Commission, Waukesha, WI.

USEPA (U.S. Environmental Protection Agency). 1992. *Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices*. U.S. Environmental Protection