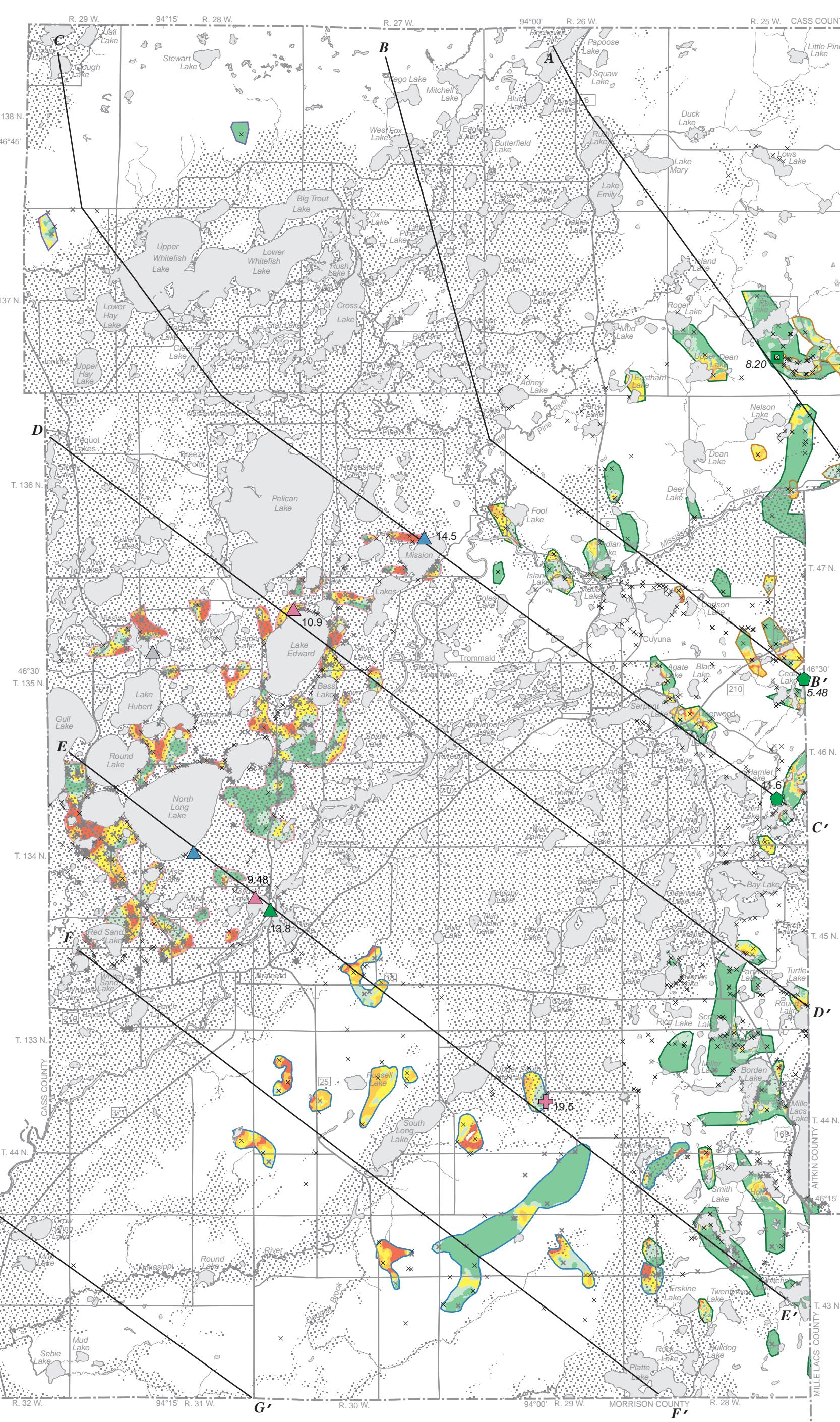
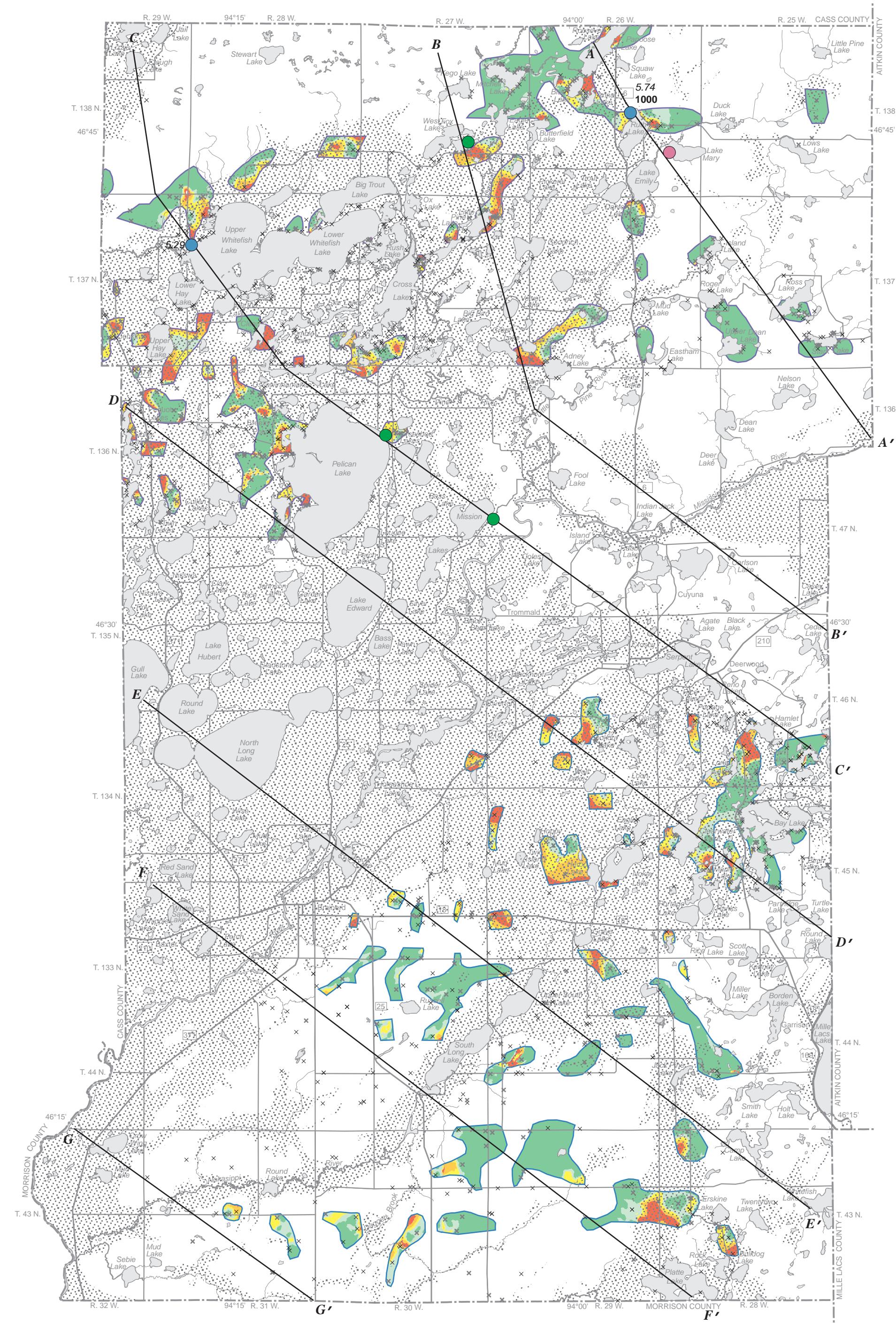
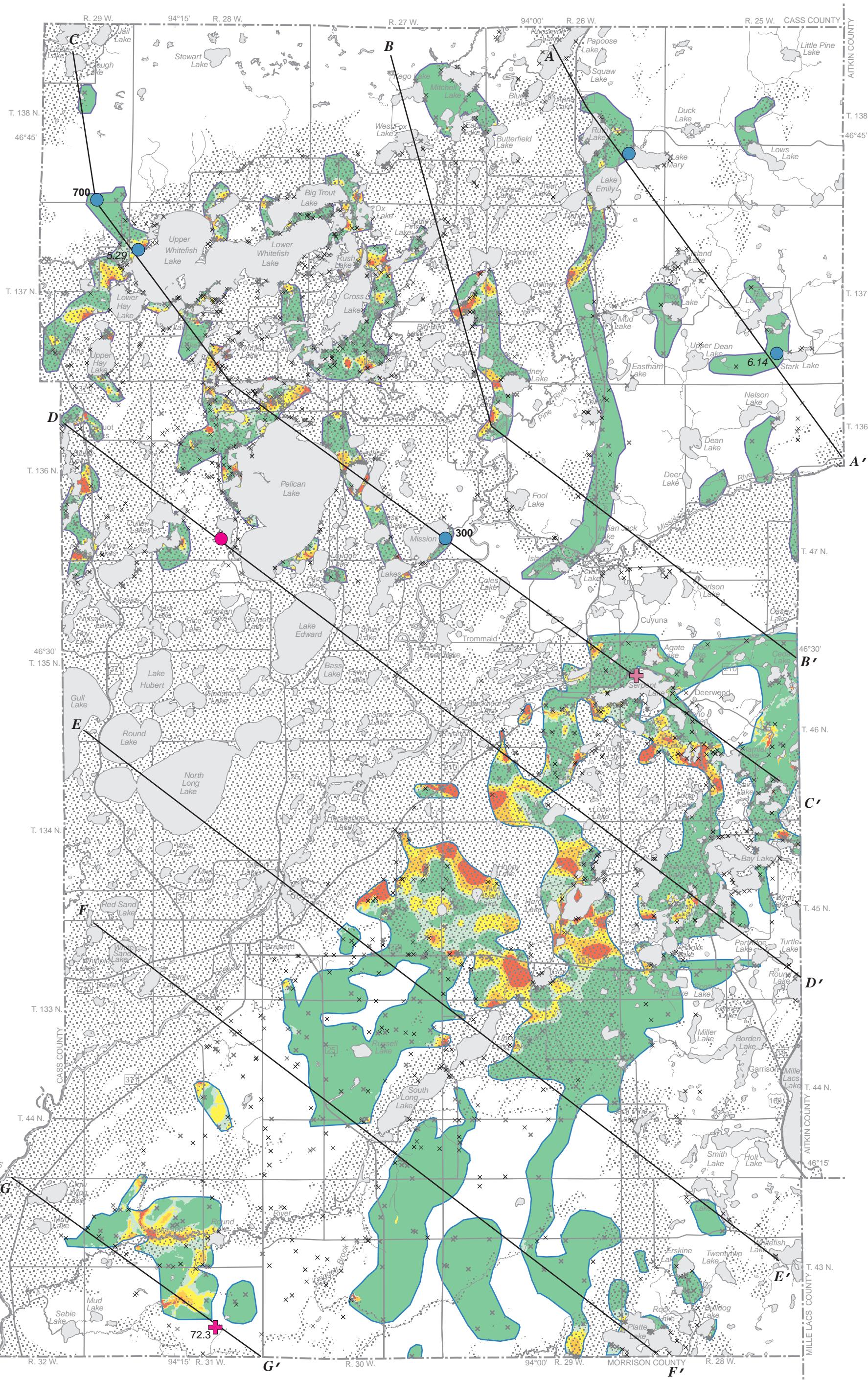

**POLLUTION SENSITIVITY
OF THE BURIED AND
SURFICIAL AQUIFERS**

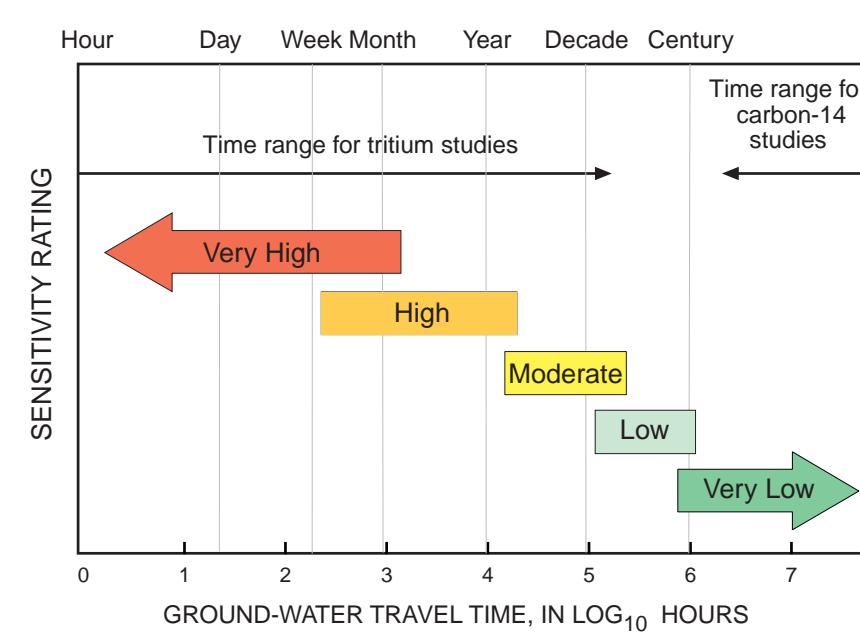
By

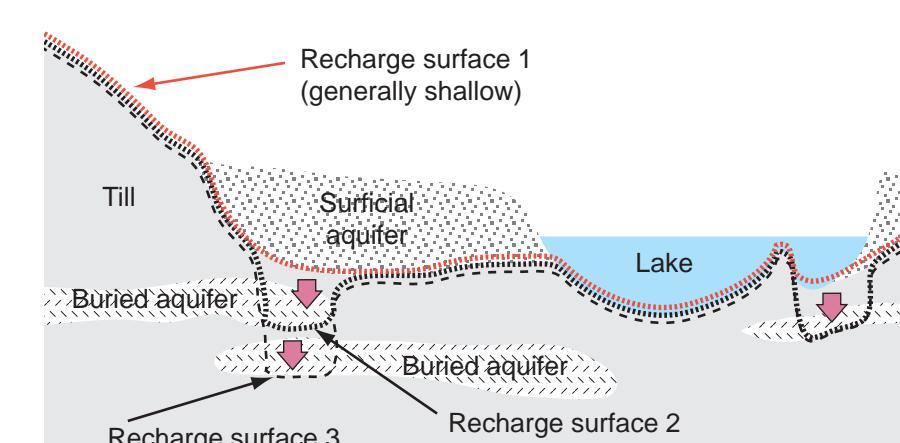

Todd A. Petersen

2007


Caution: The information on these maps is a generalized interpretation of the sensitivity of ground water to contamination. The maps are intended to be used for resource protection planning and to help focus the gathering of information for site-specific investigations.


LOCATION DIAGRAM
SCALE 1:200 000
COMPILATION SCALE 1:100 000
1 0 1 2 3 4 5 6 7 8 KILOMETERS


FIGURE 5. Pollution sensitivity of five uppermost buried sand aquifers. This map shows the distribution and sensitivity of the uppermost buried aquifers in Crow Wing County: SIAT, S1MT, BGLS, BTN1, and BTSL. The aquifer sensitivity is based on the matrix in Figure 4. Locations and selected data of water samples collected from wells completed in these aquifers are shown.


FIGURE 6. Pollution sensitivity of two midlevel buried sand aquifers. This map shows the distribution and sensitivity of the BTN2 and BTSL aquifers. The aquifer sensitivity is based on the matrix in Figure 4. Locations and selected data of water samples collected from wells completed in these aquifers are shown.

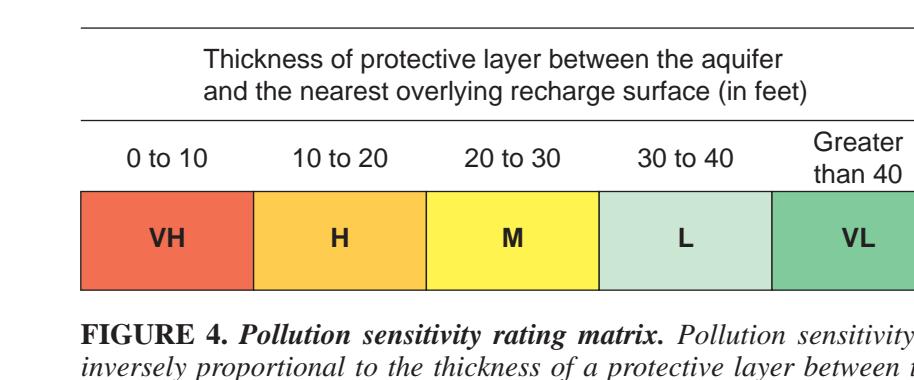

FIGURE 7. Pollution sensitivity of two lowest buried sand aquifers. This map shows the distribution and sensitivity of the BTN3 and BTN1 aquifers. The aquifer sensitivity is based on the matrix in Figure 4. Locations and selected data of water samples collected from wells completed in these aquifers are shown.

FIGURE 1. Geologic sensitivity rating as defined by vertical travel time (Geologic Sensitivity Workgroup, 1991). Ratings are based on the time range required for water at or near the surface to travel vertically into the ground water of interest or a recent sensitivity target. Tritium and carbon-14 studies indicate the relative ages of ground water.

FIGURE 3. Generalized cross section showing recharge concepts for buried aquifers considered in the sensitivity evaluations. In this model, all recent recharge is assumed to occur at the surface. Recharge surface 1 is considered to be at the land surface where till is present, at the bottom of surficial sand deposits, and at the bottom of lakes where surficial sand is not present. If less than 10 feet of fine-grained sediment (clay or till) exists between recharge surface 1 and the shallowest underlying buried aquifer, then recent recharge is assumed to reach and move to the bottom of that aquifer to form recharge surface 2. A second deeper buried aquifer that has less than 10 feet of clay or till between it and the overlying recharge surface is also assumed to allow further generation of recent recharge. In that case, recharge surface 3 is calculated at the bottom of this next deeper aquifer. The pink arrows indicate ground-water recharge of recent tritium age through a recharge surface.

FIGURE 4. Pollution sensitivity rating matrix. Pollution sensitivity is inversely proportional to the thickness of a protective layer between the top of the aquifer and the nearest overlying recharge surface as defined in Figure 3. Any buried aquifer with less than a 10-foot-thick protective layer between it and an overlying recharge surface is rated very high sensitivity because there is little fine-grained material to slow the time of travel. A thicker overlying protective layer provides additional protection to the aquifer, and sensitivity ratings are determined based on the thickness of this layer.

Sensitivity ratings

Estimated vertical travel time for water-borne contaminants to enter an aquifer (pollution sensitivity target).

VH	H	M	L	VL
Very High—Hours to months	High—Weeks to years	Recent—Water entered the ground since about 1953 (10 TU to less than 20 TU)	Mixed—Water is a mixture of recent and vintage waters (greater than 1 TU to less than 10 TU)	Vintage—Water entered the ground before 1953 (less than or equal to 1 TU)
				Very Low—A century or more
				Well not sampled for tritium.

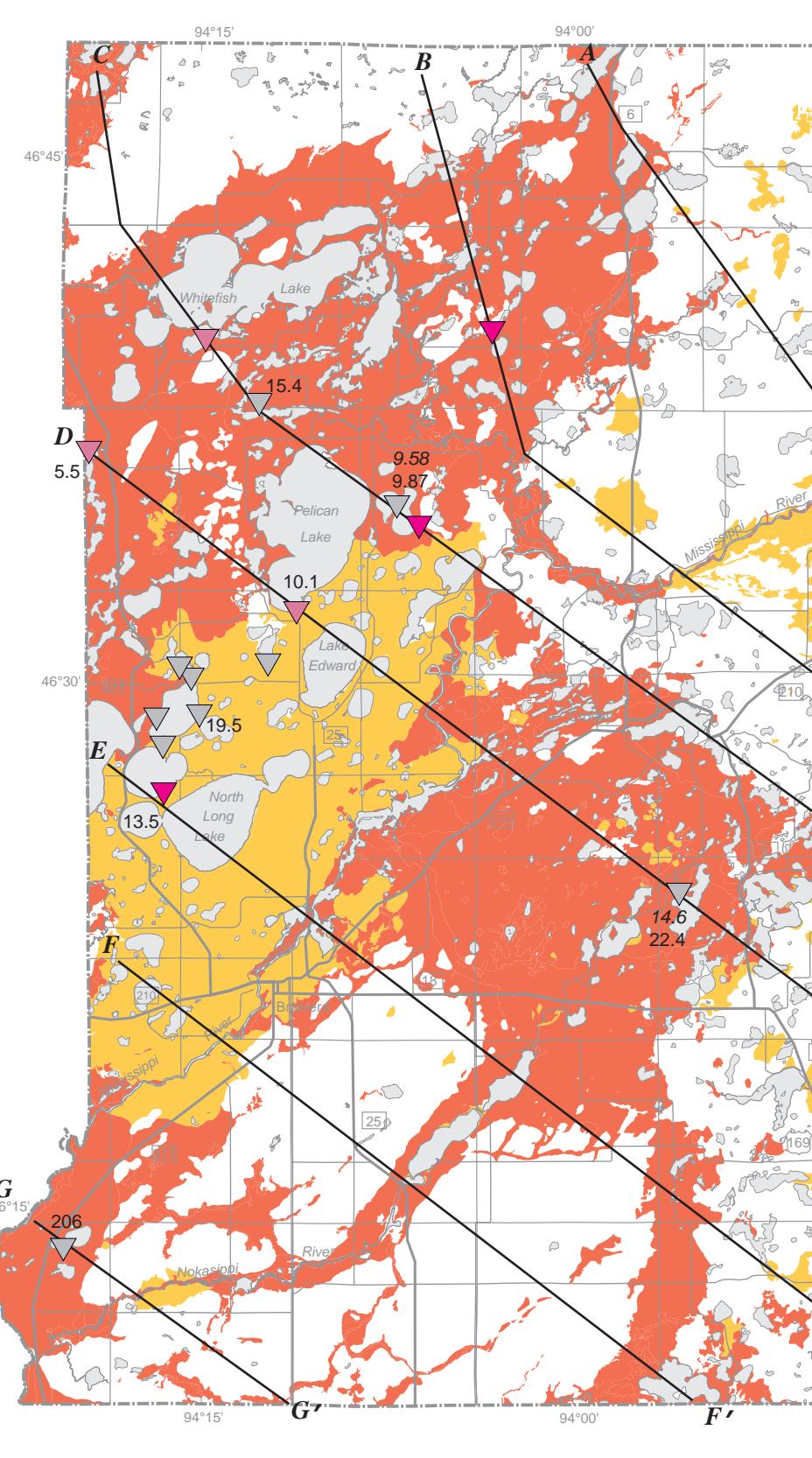
Tritium age

Color indicates tritium age of water sampled in well.

Pink	Cold war era—Water entered the ground during the peak period of atmospheric bomb testing, 1958–1959 and 1961–1972 (20 or more tritium units (TU)).
Yellow	Buried sand aquifer beneath the Nelson Lake till (SIAT).
Green	Buried sand aquifer beneath the Mille Lacs deposits (S1MT).
Blue	Buried sand aquifer associated with Glacial Lake Brainerd (BGLS).
Dark Blue	Buried sand aquifer associated with Brainerd assemblage, north (BTN1, BTN2, BTN3).
Light Blue	Buried sand aquifer associated with Brainerd assemblage, south (BTSL, BTSL, BTSL).

MAP EXPLANATION Figures 2, 5, 6, and 7

Well and aquifer symbols


	Buried sand aquifer beneath the Nelson Lake till (SIAT).
	Buried sand aquifer beneath the Mille Lacs deposits (S1MT).
	Buried sand aquifer associated with Glacial Lake Brainerd (BGLS).
	Buried sand aquifer associated with Brainerd assemblage, north (BTN1, BTN2, BTN3).
	Buried sand aquifer associated with Brainerd assemblage, south (BTSL, BTSL, BTSL).

Map symbols and labels

	Line of cross section.
	Body of water.
	Scale bar.
	Location diagram.
	Scale bar.

Aquifer pattern and colors

	Surficial sand aquifer.
	Buried sand aquifers—Colored border identifies aquifer.
	SIAT.
	S1MT.
	BGLS.
	BTN1, BTN2, BTN3.
	BTSL, BTSL, BTSL.

FIGURE 2. Pollution sensitivity of the surficial aquifer in Crow Wing County. All areas of the surficial aquifer are relatively sensitive to pollution. The sensitivity of the surficial aquifer was based on the simplified material map in Figure 1, Plate 3, Part A. The sensitivity of the sand and gravel portion of the aquifer is rated very high; however, the sensitivity of the lacustrine fine-grained sand portion of the aquifer is rated high because ground-water travel time through these finer grained sediments will be slower than it is through the coarser grained sand and gravel.

INTRODUCTION

This plate describes the sensitivity to pollution of surficial and buried aquifers in Crow Wing County by infiltration of a contaminant that moves conservatively with water.

Migration of contaminants dissolved in water through unsaturated saturated sediments is a complex process. It is affected by biological degradation, oxidizing or reducing conditions, and contaminant density among other factors. Countywide assessment of the sensitivity of ground water to pollution is a complex process.

The sensitivity assessment estimates the time of travel for water to infiltration at the land surface to the pollution sensitivity target (Figure 1). Areas with relatively short travel times (less than a few years) are rated high or very high. Areas with estimated travel times of decades or longer are rated low or very low.

SENSITIVITY TO POLLUTION OF THE SURFICIAL AQUIFER

The surficial sand aquifer has very little protective cover and the water table is generally shallow, so sensitivity to pollution of the surficial aquifer is very high to high (Figure 2). The sensitivity model is based on the simplified surficial sediment material, as mapped in Figure 1, Plate 3, Part A. The surficial sand aquifer comprises lacustrine sand of glacial Lake Brainerd and Aitkin, outwash of the Brainerd assemblage and of the Mille Lacs deposits of the Edgewood Formation and glacial Lake Brainerd. The sand is fine-grained sand with some gravel, while the outwash and terrace sediments are coarser grained sand and gravel. The outwash contains 15–20 percent gravel (Gary Meyer, written commun., Oct. 2007). The time of travel is estimated to be fairly rapid through the sand and gravel of both the outwash and the terrace sediments. Time of travel through the lacustrine sand, which is less permeable, is estimated to be longer than the time of travel through the sand and gravel. The sensitivity of the lacustrine sand is estimated as very high, and the sensitivity to pollution of the sand and gravel is estimated as very high, and the sensitivity to pollution of the lacustrine sand is estimated as high.

The surficial sand aquifer is an important source of water in Crow Wing County. Water chemistry samples were collected from 16 wells in this aquifer (Figure 2). Seven of these wells were completed in lacustrine sand deposits of Glacial Lake Brainerd, and nine of these wells were completed in sand and gravel (Figure 2). The water samples from the seven wells completed in sand and gravel were collected from the lacustrine sand. Another sample, which was not analyzed for tritium, showed anthropogenic influence with 19.5 parts per million (ppm) chloride (Cl), which indirectly indicates recent recharge water. The other four well samples were not analyzed for tritium, and those samples contained only low levels of chloride and nitrate; therefore, estimating the residence time of that ground water was impossible. The nine surficial aquifers completed in sand and gravel were generally considered the estimated sensitivity rating. Four of the wells were sampled for

tritium and had either recent or cold war era water. Of the five wells not analyzed for tritium, four had elevated chloride values.

SENSITIVITY TO POLLUTION OF BURIED AQUIFERS

Development of Sensitivity Model and Maps

The first step in creating a sensitivity model for buried aquifers was to map the subsurface geology. A map was made of the bottom elevation and thickness of the surficial sand and then of buried sand units (aquifers) (see Plate 7). By using geographic information system (GIS) software, 30-meter grids were calculated for the base of the surficial sand and the bottom of buried sand units that could be mapped. The fine-grained material between the sand bodies (e.g., clay or till) is assumed to be vertical; horizontal flow paths may be important in specific instances, but they have not been adequately mapped and are not considered in the sensitivity model. Permeability is evaluated only qualitatively.

The sensitivity assessment estimates the time of travel for water to infiltration at the land surface to the pollution sensitivity target (Figure 1). Areas with relatively short travel times (less than a few years) are rated high or very high. Areas with estimated travel times of decades or longer are rated low or very low.

The sensitivity model provides a reasonable estimate of the pollution sensitivity of the buried aquifers at county scale. Because the geology is very complex, however, unmapped sand units probably form permeable pathways between some of these aquifers, which cannot be mapped in the model. Also, the model does not account for lateral or upward ground-water flow. Therefore, some aquifers may be more or less sensitive to the discrepancy between the sensitivity model and the next best model.

Finally, the sensitivity estimates for the buried aquifers are calculated by comparing the elevation of the upper surface of each buried aquifer with the nearest overlying recharge surface (Figure 4). The distance between the top of the aquifer and the overlying recharge surface is used to determine the sensitivity to pollution of the aquifer.

This area, the water sample from the well just northeast of Pelican Lake, has an area mapped as high sensitivity, but the water sample from the well just west of Upper Whitefish Lake, near where the aquifer was mapped as high sensitivity, had no detectable tritium and 0.52 ppm Cl. This does not correlate with the chemistry results. This well appears to be located at a ground-water discharge area where the BTN2 aquifer is fed from the deeper BTN3 aquifer (see well C-1, cross-section C-C', Plate 8).

Two wells completed just outside the mapped area of the S1MT aquifer but in the same stratigraphic position. One sample had 9.2 TU and 22.1 TU. Samples with higher tritium values (cold war era) all had low chloride concentrations. This indicates that ground water that infiltrated from the surface during the 1960s was less affected by local anthropogenic influences than ground water that infiltrated in the 1970s or later. The two wells completed just outside the mapped area of the BTN3 aquifer at this location had vintage water. The other two samples were collected from locations where there were not enough data to map the aquifer beyond those particular wells.

Figure 7 shows the sensitivity to pollution for the buried sand aquifers BTN2 and BTN3. Six wells completed in the BTN3 aquifer were sampled for chemistry. Samples from five of these wells had vintage water, and the other sample had 25 TU. The sample with 25 TU had 10 feet of clay overlying the well. The second well had no detectable tritium and 0.52 ppm Cl. This well had low chloride values. Four wells were mapped as very low sensitivity, one well was mapped as a low sensitivity, and one well (with cold water era water) was outside a mapped area.

Two wells completed in the BTN3 aquifer. The water sample from a well near Serpent Lake had 17.1 TU. The aquifer is not directly mapped here, but the nearby mapped area was rated as very low sensitivity, so the sample and the sensitivity estimate do not correlate well. One possible explanation for this is that the water sample was collected from a well that was not mapped as part of the aquifer. The water sample had 10.5 ppm Cl and a Cl/Br ratio of 2.23, which indicates it is probably natural chloride (not anthropogenic or attributed to human activities). At this well, the BTN3 aquifer is upgradient from Upper Mission Lake. This older ground water is flowing toward the well from the northwest (see cross-section C-C', Plate 8). The water sample had elevated tritium values (9.8 TU and 16.1 TU). This sample had 21 TU, 72.3 ppm Cl, and a Cl/Br ratio of 2.02. This sample may indicate an unmapped lateral or vertical connection with other aquifers.

The sensitivity model provides a reasonable estimate of the pollution sensitivity of the buried aquifers at county scale. Because the geology is very complex, however, unmapped sand units probably form permeable pathways between some of these aquifers, which cannot be mapped in the model. Also, the model does not account for lateral or upward ground-water flow. Therefore, some aquifers may be more or less sensitive to the discrepancy between the sensitivity model and the next best model.

GEOCHEMICAL INDICATORS OF LAND USE CHANGE OVER TIME

Most well water samples that were collected for this project were sampled for both chloride and bromide. Chloride is a good indicator of local anthropogenic effects on the ground water because it moves conservatively with the infiltrating water. Figure 8 is a scatter plot of tritium concentrations in water samples to chloride concentrations in ppm based on water samples from 70 wells. Chloride values greater than 5 ppm are likely to be largely anthropogenic in origin. The Cl/Br ratio is greater than 400, appear to be largely anthropogenic in origin. Anthropogenic sources of chloride usually contain little bromide. Three well samples have

REFERENCES CITED

BERG, J.A., 2006, Sensitivity to pollution of the buried aquifers [Plan 9] in Geologic Atlas of Pope County, Minnesota: St. Paul, Minnesota Department of Natural Resources County Atlas Series, C-15, Part B, Scale 1:150,000.

Geologic Sensitivity Workgroup, 1991, Criteria and guidelines for